CO Oxidation on Pd(111): A First-Principles-Based Kinetic Monte Carlo Study

نویسندگان

  • Simone Piccinin
  • Michail Stamatakis
چکیده

CO oxidation on O-precovered Pd(111) surfaces exhibits remarkably different reactivities at different temperatures, which correlate with structural changes in the atomic O overlayer. Stoichiometric titration experiments by Nakai et al. (J. Chem. Phys. 2006, 124, 224712) show that although the p(2 × 2) ordered phase is inert, the (√3 × √3) and p(2 × 1) phases that form at 320 and 190 K, respectively, have different apparent activation energies and reaction orders with respect to O coverage. In this work, we perform first-principles-based kinetic Monte Carlo (kMC) simulations to understand the behavior of this catalytic system and shed light on the origin of the changes in reactivity. Accounting explicitly for lateral interactions among adsorbates and for their impact on the activation energies of the elementary processes, our simulations reproduce quantitatively the main features of the experimental measurements, and we show that the relative rates of CO adsorption and surface reaction are different as the temperature changes. We find that ordering of the adsorbate layer strongly depends on the strength of the lateral interactions but does not have a significant role on the catalytic properties of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steady-State CO Oxidation on Pd(111): First-Principles Kinetic Monte Carlo Simulations and Microkinetic Analysis

Using a kinetic Monte Carlo (KMC) approach with parameters derived from first-principles calculations, we modeled the steady-state of CO oxidation on Pd(111), a prototypical catalytic system with various practical applications, including the treatment of automotive gas exhausts. Focusing on the metallic phase of the catalyst, we studied how the rate of CO oxidation depends on temperature and pr...

متن کامل

CO oxidation on Pd(100) at technologically relevant pressure conditions: First-principles kinetic Monte Carlo study

The possible significance of oxide formation for the catalytic activity of transition metals in heterogeneous oxidation catalysis has evoked a lively discussion over the recent years. On the more noble transition metals such as Pd, Pt, or Ag , the low stability of the common bulk oxides primarily suggests subnanometer thin oxide films, so-called surface oxides, as potential candidates that may ...

متن کامل

Rationalizing the Relation between Adlayer Structure and Observed Kinetics in Catalysis

Relating the kinetic behavior of catalytic reactions with adsorbate overlayer structure is a long-standing challenge in catalysis. Even for simple systems such as CO oxidation on Pd(111), recent studies have observed rich behavior. In particular, titration experiments by Kondoh and coworkers on this system (J. Chem. Phys. 2006, 124, 224712), demonstrated firstorder reaction kinetics with respec...

متن کامل

Adlayer inhomogeneity without lateral interactions: rationalizing correlation effects in CO oxidation at RuO2(110) with first-principles kinetic Monte Carlo.

Microkinetic modeling of surface chemical reactions still relies heavily on the mean-field based rate equation approach. This approach is expected to be most accurate for systems without appreciable lateral interactions among the adsorbed chemicals, and there in particular for the uniform adlayers resulting in poisoned regimes with predominant coverage of one species. Using first-principles kin...

متن کامل

Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

In multiscale models of heterogeneous catalysis, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. This usually is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014